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ABSTRACT

We discus6 a method for suppressing the oscillations of a linear system

subject to an external periodic disturbance of fixed, but unknown, period.

The method entails augmentation of the original plant with a compensator and

parameter identifier. The near equilibrium dynamics of the resulting system

are analyzed and shown to be related to a linear delay equation with infinite

delay and periodic coefficients. A corresponding Floquet theory is

indicated. A FORTRAN program approximately realizing the period identifier is

included and numerical results obtained with this program are graphically

displayed and analyzed.
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SIGNIFICANCE AND EXPLANATION

For a wide variety of systems, including sighting devices, weapons,

machine tool arms, etc., operation under conditions which involve significant

oscillatory disturbances is necessary. Often it is desirable to dynamically

decouple the system from the disturbances by means of the intervention of

active control. In many cases this must be done without a prior knowledge of

the period (equivalently, the frequency) of the incominq disturbance. In this

paper we propose a method for such vibration suppression using a compensator

and frequency/period identifier. The stability of the resulting complex is

analyzed and numerical studies are presented to indicate the potential

4 effectiveness of the procedure.

" n Por

.9 The responsibility for the wording and views expressed in this descriptive
summary lies with IbRC, and not with the author of this report.
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FREQUENCY/PERIOD ESTIMATION AND ADAPTIVE
REJECTION OF PERIODIC DISTURBANCES

D. L. Russell'

0. INTRODUCTION

In a wide variety of applications one encounters a system of the form

AX + CU + v, (0 AK (0.1)at
wherein x is the n-dimensional state vector, u is the m-dimensional control vector

and v is a periodic n-dimensional vector disturbance function with least positive

period T:

v(t) - v(t + T) • (0.2)

In many cases x - Ax by itself represents the dynamics of an elastic system, the

disturbance v arises from the environment in which the elastic system is placed, and the

control u is used to mitigate the effects of this disturbance. Examples include

sighting devices (cameras, telescopes, etc.), weapons, and machine tool arms, operated

under conditions which involve significant oscillatory disturbances, such as would be the

case for a telescope operated from an aircraft, e.g.. Another important application

arises in connection with the measurement and active suppression of aerodynamic flutter in

aircraft wings, tail structures, etc.

The approach taken in this paper is to suppose that v(t) can be adequately modelled

by

v(t) - Bz(t), B n x 2r, (0.3)

where z(t) satisfies a linear system

z - FE , (0.4)

*Mathematics Research Center/Department of Mathematics, University of Wisconsin, Madison,
WI 53706.

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041 and in part by the
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o 0 --- 0 0

0 0 0 --- 0 o

0 0 0 M --- 0 C
F 2
0 0 E2  0 --- 0 0

(0.5)

0 0 0 0 0 r%r

(0 0 0 0 -- r 0r

2k -r k , j = 1,2,...,r, (0.6)

j T

the kj being positive integers. These need not necessarily be 1,2,...,r; in some cases

it is known, e.g., that only odd order harmonics occur so that we would use k, = 1,

k2 = 3, ..., kr 2r -1.

Assuming F known, and this will bring us to the subject of frequency estimation

later on, we can construct a compensator

, = Sx + Fy (0.7)

where y is the 2r-dimensional compensator state, and consider the combined system

=Ax +Bz +Cu

= Sx + Fy (0.8)

2 = Fz.

We will suppose that the range of C includes the range of P. This means that, in

* principle, one could solve
Cu = -Bz (0.9)

and cancel the effect of the disturbance altogether. For a telescope operated from a

moving vehicle, neclecting translational motion and considering only the angular

displacements, this would be the case if the controls, acting through the mounting, have

both azimuth and elevation correctional capability. In practice the direct cancellation

(0.9) is rarely feasible due to noise, measurement delays, limited measurement capability,
0

etc.

-2-
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Let 4 be any nonsingular 2r x 2r matrix which commutes with F1 in most cases we

would use the identity matrix. We may then find an m x 2r matrix L such that

CL . -B6 " 1 (0.10)

Assuming additionally that (A,C) is stabilizable, let K be an m x n matrix such

that A + CK is a stability matrix and let u be generated by the feedback control law

U - KX + Ly • (0.11)

Using this in (0.8) we have

) s ) ( (0.12)

z0 0 •

We will see in Section 1 that it is possible to select S in such a way that the

control law (0.11) dynamically decouples the plant state x from the periodic

disturbance v(t) - Bz(t).

The foregoing scheme, to be developed more fully in the next section, clearly amounts

to the construction of a reduced order observer for the disturbance state zt) (see

(10]) and assumes that the plant state x(t) is completely accessible. If this is not

the case, dynamic decoupling is probably best realized with the construction of a full

n + 2r dimensional state observer. Assuming an observation

w - H0x + Hlz (0.13)

available such that the pair

(H0 ,HI) (A +CK B) (0.14)

is observable, compatible matrices LO,L I are selected (see (81, e.g.) such that

( A + CK - L0 H0  B - L (0.15)

-LINO P -LINH1

is a stability matrix. we then adjoin to the plant disturbance system

- (A + CK)x + Bz + Cu (0.16)

- Fz (0.17)

-3-



the estimator system

S=(A + C)g + L0 (Hx - H0 &) + L0 (H1: - H 1) (0.18)

Fz + LI(Hox - H0, ) + LI(H1 z 
- H1r)

Then, choosing u such that

Cu = -BF (0.19)

and letting e x - , F = z - F we find that

A + CK - L0H 0  B - L0H 1

-LH F- LIH1

and we conclude, since (0.15) is a stbility matrix, that

lim e(t) - lim f(t) = 0

Since, with (0.19), (0.16), (0.17) become

x = (A + CK)x + Bf (0.20)

Fz (0.21)

we conclude that

lim x(t) - 0
t+C

and thus x(t) is decoupled from z. This is a standard procedure, such as described in

[10], for example.

Whether decompling is carried out as in Section 1 or as above, it is clear that the

estimator system requires knowledge of the matrix (0.5) and hence the parameter a = 21/T

in (0.6). When the period, T, and hence a, is unknown it is necessary to adjoin a

parameter estimator to supply the system with an estimate for T. Such a parameter

0 estimator is described in Section 2. Stability considerations in connection with the

period estimator lead to examination of a related functional equation of retarded type in

Section 3. A numerical realization of the estimator of Section 2 is developed in Section

4 and examples of its use are presented in Section 5.

-4-
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1. COMPENSATOR DESIGN FOR A KNOWN DISTURBANCE FREQUENCY

If the period, T, or, equivalently, the frequency v - I/T, of the disturbance v

is known, then we may assume that F is known and the only problem in constructing the

compensator (0.7) is the selection of the 2r x n matrix S. Let us note that the matrix

equation

(A + CK  "B6- 11(0°1 - 1+ (F.+)
S F *~0

is clearly valid whatever S may be. This means that if we define F, n by

x (0 ),z+ , -Fz) (1.2)
y rl1 '

we shall have

r (A + CK -B*- (1.3)

T S F n

as is easily checked. If the matrix in (1.3) is a stability matrix, then x(t) F(t)

will have the property

hir Vx(t)l - 0

so that the periodic disturbance v(t) - Bz(t) has only a transient effect on x(t) the

range of the transfer function matrix from z to (x) includes only vectors of the form
y

(0 ). Thus the plant state vector x is dynamically decoupled from z. If the matrix in
y

(1.3) is not a stability matrix no such inferences are valid. Our proof that S can be

selected so as to satisfy this stability requirement begins with

THEOREM I Let F be antihermitian, (as in (0.5)), so that

F* -F

Then the n x m linear matrix equation

(A + CK)P0 - P0F - B = 0 (1.4)

has a unique n x 2r solution P0. If the pair (P0 ,F) is observable, then the 2r x n

-5-



matrix S can be chosen in such a way that

M (A + CK -B 4 - 1 .5S= A+CX E4) (1.5)
S F

is a stability matrix.

Proof Since F* = -F implies that F has only purely imaginary eigenvalues, the

existence of a unique solution P0 of (1.4) is assured by a familiar theorem in matrix

theory (see, e.y., (2]). An easy application of the implicit function theorem then shows

that the cubic matrix equation

(A + CK)P - PF - e - 
+ B pp*P Q(P,) = 0 (1.6)

has a unique solution P = P(e) defined for small c + 0 with

lim P(e) = P0  (1.7)
E 0

Setting

S = S(e) = _eP(e)* (1.8)

we note that M in (1.5) is similar to

I -P(C) A + CK -B'- 1 I P(C)'(i= fn H n
0 12r -P(C)* F 2r

=(A + CK + ep(e)P(t)' Q(p(e),t) 1
-eP(e)* F - EP()*P(e)

(A + CK + eP(e)P(e)* 0
-EP(e)* F -P()P(C)*

Since K has been chosen so that A + CK is a stability matrix,

Mn(C) = A + CK + EP(e)P(e)*

is an n x n stability matrix for sufficiently small C > 0. From the antihermitian

property of F we can see that

(F - EP(E)*P(e)l* 12r + I2r (F - P(E)*P(e)l + 2EP(e)*P(e) = 0.

-6-
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Applying a well known modification of Liapounov's Theorem (See, e.g., (81) we conclude

that

M2r(E) 7 F - CP(E)*P(C)

is a stability matrix for E > 0 if (P(C),F) is observable. Since we have assumed

(Po,F) observable and (1.7) is true, (P(e),F) is observable for E > 0 sufficiently

small and M2 r(E) is thus a stability matrix for these values of c, at least. Since

M(M) is lower block triangular with blocks M (), M 2r(), its stability, and hence

that of M = M(M) in (1.5) is assured with the choice (1.8) for S - S(c) for

sufficiently small C > 0.

It will be noted that the choice of the feedback matrix K is import .. at least

two ways. Improvement of the convergence of -y to z, i.e., reduction of tV

transient effect of the disturbance v = Bz, dictates choosing C larger to improve the

stability properties of F - CP(C)*P(e). But, since A + CX + EP(E)P(C)* suffers,

stability-wise, as E is increased, K must be used to offset this effect. In Section 3

we will find even further considerations to take into account in the selection of e

and K.

Since P(M) satisfies a cubic equation, which may entail some difficulty of

solution, the following corollary is useful in applications.

COROLLARY 2 If E is sufficiently small, then
A + CK- BA

M(C) = ( (1.9)

corresponding to

*

S - ;(E) = -EPo (1.10)

in (1.5) is also a stability matrix.

I..

Proof With the indicated choice of S the matrix M(C) is similar to

*I P)( X-B* - P0

0 - -Po* F I
0

. .. . .- .. " .- .
- . -- . . ._ . ."



(A + CK + cPoP0* (A + CK)P 0 - P0F - B6_1 + EPoP0*P 0

-EPo* F - Po*Po

(A + CK + E 0 Po* FP 0 p

(tf. (1.4)x (1.11 0 F) (1.11es

Let 1 for E > 0. With P () = u Pot i o(1)

A+ CK + P (U)P u-p (U) P (u)p (U) (
0 0 uj 0

which is similar to

(A + CK + P0 (II)P0 (U)* P0 (u)P0 (u)*P0 (U)

-P0 (U)* F - P0 (U)*P0(U)

( AI(U) P3(U)(

-P0 (').  F u) • (1.12)

The corresponding lower triangular matrix

(A(u) 0 )

-P0O(U) *  FI1(U)

is a stability matrix, using essentially the same argument as in Theorem 1, provided

u > 0 is sufficiently small. Consider the equation

(A (U) -P* 0 ))(Q r' +( R A 0

0 F 1 (11) * R* T R T P 0(11)* F1(U

+(1 2P0 (u).P 0 (U)) = 0 . (1.13)

Solving this, we find that T = 
1
2r and

AI(U)*Q - P0 (U)R* + QAI(u) - RP 0(u)* + I = 0 (1.14)

A 1 (U)*R - P 0 (u) + RF1 (u) = 0 . (1.15)

' -8-
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For small u (equivalently, small c ) the eigenvalues of AI(u) and -FI(U) are

uniformly separated and solution of (1.15) shows that

R -)(10(u)1 =0(u)R - Qfop0(U)l/ -ON

and then a similar analysis of the first equation shows that

Q - Q0 (u) + 0(U 2)

where

AI(N)*V0(I) + Q0 (J)Al(U) + 'n = 0

Thus Q0 ( ), and hence 9, remains bounded for u > 0 small. Since (1.13) is

satisfied, using the matrix of (1.12) instead, we have

A A1 ( Wj) - 0  ( Q R + * R ( A ( ) P3 ( "I
P3(1U)* r (u)* R* T -T P (U)* F (U)

-)1 2 01 72 QpPo O* "/ 2
01 r2 u.P* -I

r = HA() P("!''

I

+ (IQP O~PP *Q 0

From this it is easy to see that the matrix on the right hand side is nonpositive for

small U > 0 and the result follows by the familiar Liapounov theorem, provided that

whenever

A I (,j p 3 O

-9-
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the quadratic form

r~(tnIt f 2 ( +) (U4QPOPO.Popo*Q:)

cannot v7ni2 on any* inera o0pstv eqh o ml i hsqeto eue

veryo quil ton the inservalit of the pairth (.For smlw hish haqaradetn ssue

This completes the proof.
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2. PERIOD ESTIMATION AND A RELATED STABILITY PROBLEM

Whether the submatrix S in the definition (1.5) of M is selected as in Theorem I

or as in Corollary 2, or by some other procedure, it is clear that the overall matrix K

will depend on the period, T, of the disturbance v so that, supposing now that the

design parameter C has been fixed, we have

M - P(a) - {A + CK -BCla)-  (2.1)S (a) F(a)

2w

where = -- (if (0.6)).

It would be possible to estimate a directly using various well known parameter

estimation procedures ((6], (9],). However, in these procedures one tends to encounter

either instability or slow convergence, or other difficulties. For example, the model

reference algorithm of (6] cannot be applied because, in the complete system (0.12) the

portion z = Fz of that system is not controllable with respect to u.

We have elected to use a very simple procedure to estimate the period, T,

directly. Assuming that an output, or observation

W(t) = H1x(t) + H2y(t) = (H7 "H (x(t)) Hw(t), (2.2)1 2 y(t)

where (cf. (0.3), (0.12), (1.5)).

=M()w+ +A (V)) (2.3)
0

is available, from the assumed stability property of the matrix M(%) it follows that a

periodic disturbance input v will result in an output w(t) which, except for transient

behavior, is also periodic with the same period. It therefore makes sense, in the

continuous framework which we use here for analysis, to consider the cost functional,for

Y > 0,

C0 (T,t) te(s-t)lw(s) - w(s - Tl)*rw(s) - w(s - T)lds
0

r teY(St)fw(s) - w(s - T0 )*H*H(w(s) - w(s - T)lds
0

K -11-
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and select, as our estimate for the period T at time t, that value T(t) which

minimizes C(T,t) within a given range T1 < T 4 T2 . (The range must be restricted in

order to avoid the trivial period T = 0 and multiples of the minimum period of the

disturbance.) Then

a(t) - 2w (2.5)
T(t)

is the estimate at time t for a in (0.6), (2.3). A numerical procedure approximating

this optimization process is described in Section 4 and is used to obtain the

computational results of Section 5. There it will be seen that certain steps do have to

be taken in order to ensure the stability of the combined control/estimation system. Our

purpose here is to provide a framework for the stability analysis by developing a

linearized variational equation for that system about the nominal time trajectory in the

case where the true period, which we will call To, lies in the interior of the interval

T 4 T T.
1 2-

For our analysis of the combined use of (2.3) and (2.4) we will consider, instead

of C0 (T,t), as given by (2.4), the cost

C(T,t) = ey(st)(w(s) - w(s - T))*H*H(w(s) - w(s - T))ds (2.6)

0

wherein we assume that the trajectory w(s) is defined in the indefinite past. The

justification for this lies in the fact that if (2.3) and (2.6) together yield a stable

process, the difference between the use of (2.6) and (2.4) will be transient.

2v
To carry out this program we begin by supposing that when the correct value C0  r-

is used in (2.3) the steady state To - periodic solution resulting from the To -

periodic input v(t) is w0 (t) and w0 (t) = Hw0 (t). Since our estimate, a(t), will vary

from a0' we suppose that the actual solution of (2.3) which we obtain is w(t). Thus

P(t) - Q(t - T0 ) (2.7)

w(t) = w0 (t) + w(t , (2.8)

-12-
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-(t} - a + Aa(t) , (2.9)

T(t) - T0 + AT(t) . (2.10)

A necessary condition in order that T(t) should minimize C(T,t) is obtained by

differentiating C(T,t) with respect to T and setting the result at T - T(t) equal to

zero. Thus (cf. (2.2), (2.3), (2.5))

0 1 A C(T,t)
2 A T - Tt)

- (lt(s ) - w(s - T(t)l)lH*Hw(s - T(t))ds

= t '(wts) - w(s - T(t)))H*fA(aI(s - T(t)))w(s - Tlt)

+ F(s - T(t))lds . (2.11)

Noting (2.5), we see that (2.11) is, implicitly, an equation for Tit) which is coupled

with the system (2.3) satisfied by w(t). The resulting coupled system is clearly a

nonlinear functional equation of delay type. We are concerned with the (at least local

with respect to *, and w0(t)) existence, uniqueness and asymptotic stability of

solutions.

LEMMA 3. For fixed t and a trajectory w(s) - < s 4 t, for (2.3), corresponding to

a continuous TO - periodic A(s), - - <a 4 t, the equation (2.11) is solvable for

T(t) near To  if

- (wit) - w(t - T 0l*H4(t - T O )

+ teY(et) wl)eH*w(s - T )s
-e0

t
+ a (tsY(et)fw(s) - w(s - T )OI * (. - To)do

0

1

* -- 3- '. .- -
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It

rtey(-t) w(s)e*H*H;( - T )do
0 0

A f t eY(s-t) (wls -vs - T ))Hf'w(s - T )ds # 0 (2.12)
t 0 0

Within the class of w which satisfy

-w(s) < M0 , -. < s t , (2.13)

,w(s) - w0 (8)1 4 C , t - T ( a ( t (2.14)

this is true for sufficiently large T are sufficiently small C if

eY(st) 0 (s)H*Hw 0 (s)ds * 0 (2.15)

and this, in turn, is true if the To - periodic function Hw0 (s) - W0 (s) is not

constants

Proof Assume for the moment that R(t) is a function in C'. Differentiating the second

line of (2.11) with respect to T at T = To and retaining only zero and first order

terms in AT(t) we obtain the equation, linearized with respect to AT,

= ;e(- t w(s - T0 )*H*H;(s - T0)dsAT(t)

- tef(s-t)rw(s) - w(s - T ))*H*Hw(s - T )dsAT(t)
0 0

+ eY(s-t(w(s) - w(s - T ) H*Hw(s - T )ds + .... (2.16)

0 -

Integrating the second term by parts we have

o f-(w(t) - w(t T n)H*H;(t - TO) + tey(S'-t) (s)*H*H;(s - T)ds +

0

-14-
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+ arteY(lSt)(wls) - w(s - T0 0H-4ls - T0 )ds1ATlt)

0 0

This expression no longer depends on w(s - T0), hence we may relax the requirement

F e C since A e C0  can be uniformly approximated in the C0  norm by A e Ct .

Examination of the remainder term shows that the same argument applies there and we

conclude that (2.16) is indeed valid to first order in AT(t). The first statement of our

lema then follows immediately from the implicit function theorem.

The last statement follows from the property

w0 (s) - w 0 (s - TO ) S 0, - < a C t (2.18)

together with (2.3), (2.7), (2.17)., which enable one to make the first term in (2.16)

arbitrarily close to the left hand side of (2.15) and the second term arbitrarily close to

zero. This completes the proof of Lemma 3.

The linearization with respect to AT, Aw in obtained by using (2.18) in (2.16).

Because w0 (a) - w0 (s - TO) 0 and because only zero order terms are retained as

coefficients of the first order term AT(t), the result iu

rrteY(s't) w0 ()*H*Hw 0 (s - T0)dsIAT(t)
.Mo

+ ft eYl(-t)(w(s) -Aw(s - T0 ))*H-w 0 ls - T 0 )ds - 0

and using (2.18), w0(s - TO ) 0 (s), and the assumption (2.15) we have

eY(s-t)(ws) - Aw(s - T0 *)HeH; 0lsds

AT(t) - t , (2.19)

fteY(st) w 0 
( )*H*H 0 ( )ds

which is a delay type functional equation relating AT(t) and the time history of Aw.

,-.,-- -15-
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Then from (2.3) we have, to first order,

w+w 0 -M(o)W + B + M(-O)W + (a ())w 0 
+ "'

and, since w0 = Ml0 )w0 + 0 and (2.5) applies, we have as our linearized system (2.19)J0

and

A;(t) - M(a' )Aw(t) - ~ )w (t))A .t (2.20)

A single equation may be obtained by noting that for T > TO

.'A" ls - A;(@ T 0oWe lAwls) - Awls - T T0 0T

T 0a 2 3a 0 0Tla
2w 3M

= (00 )(tiv(s) - Aw(s -T - j()w s)AT(s) M2 a (o0)w 0 (s - T0 )ATls - TO)

M(%(Aw5) T0  - ( I0 )w0(l) (ATls AT18 - T O),

where we have used w0 (s) - w0 s - T0 ). Then

Aw(t) - Aw(t - TO )

-
2
- t 0 a (a )w0 (a)(AT() T(O - T0 ))ds

T 2-0 0
0

and thus

AT(t) -t (s- It

e 
-  

w0 (s)*H*w 0s)ds

t *)*(5-)
x e(s-t) w(oa) 3 e

( (ATMa) - ATIO- T0 )do H*Hw0 (sds

-16-
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I.

Letting

W0 (yrt) - 2%/T 0
2  (2.21)

0 yls-t) z0(.)'H-Ho ds

-U0 0

we have
*

~~~t w ( l N 1 0 1 t ey lS -t ) M l 0 l (8 - l HH0 )s d

AT(t) w0C(yt) fw 0 (a) ( 0 H*Hw 0(sds

x AT(I - ATCO - T0 ))dO,

which has the form

t

AT(t) . J V1 (Y,t,a,,(. 0 ))(AT( O - T0 ))dO (2.22)

with

f3 t (8t 14( (s-a)
* W11y't'oMu 0 )) = W0 (yt)w0 (O) *6 ( 0 ) fee ( Hw 0 slds (2.23)Qa

LEMMA 4. Wl(Y,t,o,(a 0 )) in periodic in t and a with period To , in the sense

WI(Yt,a,M401) - w1 (Yt + T0,o + T0 MQ 0 ))

Proof. Using the formula (2.23) directly we see that

WIYt + TOa + T0 ,M(Q0 I) " W0(yt + T0 ) 0CO + T0 ) (a ,

t+T0  Y(s-t-T 0 ) M(%0 0(-0-T0 ) 0

+T 0

From the To - periodicity of w0 1t) the same periodicity of Wo y,t) follows easily.

4 Then with rs - To

W (Y,t + T0 ,o + T0 ,MI(a0 )) - W0 y,t)w0 (a)3 ( 0 )

t0 a~ 0 ra

t Y(r-t)e ( a 0  (r-0) o 'H (r + T0 )dr

-17-
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and, using the To periodicity of V0  we have

W I(Y,t + Tor + T0114(u0 0~ W 1 (Y't ,,M(n )

as claimed.

The equation (2.22) can be rewritten as

AT(t) =(W(y't,0,M(O flAT(aF)do (2.24)
0

with

W(Yt'C'M = W (Y't'OM(et)M t T < a t

W(Y~t'clMcz0  W w1(yt(1,m(af -W1 (Y ,t , + T0 ,M4d10 )), < a Ct - T0

0 1 0 ( 0 ) w1 y 0txa

W(yetiffm(a 0 is continuous as a function of a and, clearly,

Wt'y,t + T0,a + TOON(Cl0 ) = (Y't'UoMa 0)

We have shown Y, M(a 0) directly as arguments of W because y, c and K, the last two

involved in the construction of M(a 0 ) (see (2.1)) are the parameters which we have to

work with in order to influence W, and hence the solutions of (2.24). It is clear from

(2.22) that W depends on Toas well.

... .. . -..1..-



3. ANALYSIS OF FLOQUET TYPE SOLUTIONS

The fact that the equation (2.24) involves an infinite time delay places it in a

class of functional differential equations with periodic coefficients whose properties

have not been fully explored. From the behavior of solutions of such equations with

finite delays ([3], [4]) we expect that, with some restrictions on the kernel

W[y't,,M(Q0])) , the dominant solutions should be solutions of "Floquet type", i.e.,

solutions of the form

AT(t) - e AtP(t) , (3.1)

where P(t) is a continuous To - periodic function:

P(t + To ) - P(t)

The main point of this section is to indicate that this is, indeed, the case for kernals

satisfying a uniform decay condition

for positive C, c.

Before entering upon the proof of this, let us note some rather transparent results

which, however superficial, give some indication of the factors which are likely to play a

role in our analysis. Suppose an inequality (3.2) is satisfied for positive c, C.

Supposing a solution of the form (3.1) to exist, we normalize P(t) so that

sup IP(s) = I
se~t, t - T0]

Then we let t be such that IP(t)I = 1. Multiplying by a constant, if need be, we may

assume P(t) 1 1. Then

At (y, a O

or

t
J W(ytL,M([O))e A(0t)P(O)do = 1

-19-
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But

Sw(Y' t' a, 1(CL0 ). (a-t )P(O)I C .(c  +  Re(X))(-t)

So that

c t (c + Re(A))(o-t)do ), I

yielding an upper bound on Re ]:

C C1?l>)Re(A)(c - c.
c + ReI 

C

Under what circumstances could a bound of the type (3.2) be expected? Recalling that

* aM * ey(a-t)W1{Y~tOM(%0)J = W0 (Y,tlw0 (o) (a0)

t Y(sO) ( 0 )*(s'o)
SJ e H*Hw 0(s)ds

o0

we note that with r - s - 0,

teS-) ) + H*Hwlr + Ods tell) + 1)rH*Hl r + o)dr

S0

Since w0  is periodic, if the eigenvalues M of M(a0 ) satisfy

Re(p) 4 - 6

for some 6 > 0, we will have, for some H0 > 0

(M(a0 )* + yI)r
Ie H*Hw 0 lr + 0) I ( M 0ey-6)r

!0

so that

Ij e H*w YI)r 4W0 (r + o)drl

0

-M e(-6lrdr M0  [e(Y-6)(t-0) - (33)

-20-
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We expect W0 (t,y) to be O(Y) from (2.21)1 write

1Wo(t,Y)l e. m I

and then, since w0 (O) is periodic,

1W (tY)w ()* am e
0 0 3Q 0

( M2Y e(0t) (3.4)

Combining this with (3.3), (2.23)

JI,, ( 7 t # o,(QO ))J 4 M 0 K2 6 0 t

giving C- 0 M2 Y , c - 6.

A comparable estimate will then apply to W(y t,1,(0

From this we see that if we are to control the identifier stability properties, this

must be done through y and through the system matrix M(y0 ), by choice of Y, e and

K (or through choice of y, K ,L0 , L1  if we use the full system estimator as decribed in

Section 0. Further, we see from (2.21) that W0 (,t), and hence wIIY't,OM(O0)),

WLY,t,0,M(0)) increase rapidly as the frequency parameter a - 2 increases, i.e.,o T0

as To decreases. Thus, to be able to reject higher frequencies while maintaining

stability we must expect to find it necessary to increase the damping in the system (2.3)

by use of higher gains E and K (of (1.5), 61.8)). We will also see in Section 5 that

this expectation is realized.

We proceed now to state a theorem to the effect that if a bound of the form (3.2)

applies, then all solutions of (2.24) which do not satisfy

IdT(t)I 4 Be - t , 0 4 t < , (3.5)

where B is positive and B > 0 is less than c by an arbitrarily small amount, must be

linear combinations of Floquet type solutions.

-21-
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THEOREM 5. Consider the vector functional equation

t

z(t) J W(t,s)z(s)ds, z e R
,  (3.6)

where W(t,s) is a (piecewise continuous, at least) m x m matrix function satisfying

IW(t,s)E < Ce
- c

(t
-
s), -- < s t , (3.7)

W(t + T, s + t) = W(t,s) (3.8)

for positive numbers C, c, T. Then, given any 8 < c, and any solution z(t) with

locally square integrable initial function satisfying

0 2c1 2
e ] slR ds < ,(3.9)

- R

we can write

z(t) - zF(t) + za(t), t ) 0 (3.10)

where, for some positive B,

z a(t)l 4 Be
- t

, t 0 0 (3.11)

and z F(t) is a linear combination of Floquet type solutions, i.e., solutions of the form

(t) = e P(t), P(t + T) = P(t), P e C t[O,aj,R
m
) , (3.12)

or, in some cases (multiple "eigenvalues")

;(t) = exttPp(t) , (3.13)

where p is a positive integer and P(t) is as in (3.12).

A complete proof of Theorem 5 is beyond the scope of the present work but a sketch of

the proof will be given in Section 6.

From this result we see that whenever an inequality of the type (3.2) is valid with

c > 0, then all solutions of (2.24) decay at a uniform exponential rate unless there are

actually solutions (3.1) of Floquet type for which Re(A) > 0. The question arises, of

course, as to how such Floquet exponents might actually be computed. It seems almost

certain that the most efficient procedure involves actual solution of (2.24) or (2.19),

-

-22-
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0
(2.20), assuming an adequate approximation procedure is available. The procedure is

essentially the same one as is used to compute the dominant (pairs of) root(s) of an

ordinary polynomial.

Returning to AT(t) as the name for the solution, we select a more or less arbitrary

initial state AT(t) on some interval [-T,0] (in terms of Section 6 this should be a

z such that the residue of (I - Q) " q(A,z) at A - Az is not zero, which is

generically true). The resulting solution AT(t), t > 0, is computed and we examine

successive segments of length TO

AT k(s) - AT(T 0 + s), 0 ( s 4 To# k - 0,1,2,3,

If the largest multiplier
AT 0

*is a unique real number, then generically with respect to the choice of initial function

AT(t), t e [-T,0], we shall have (using the least squares approach)

T
I AT(S )ATk1 (s)ds

1V " lim 0  T
k- J (ATk. I(s)) 2

ds

0

In the case of a dominant complex conjugate pair the procedure is only slightly more

complicated. We solve

ATk (s) + AT + Tk2(s) -0

for a and 0 in the least squares (least L2 norm) sense, which amounts to

*Tk- (J c(a)2 do Tk- (s)ATk-2 Wsdo ~ (:

T T 2d a +

00
T ATk-2(sA Tk-1( Wds fTAT k-(s) 2do O

-23-
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kTk(S) ATk (s) ds
01 0
T

ATk(s) ATk2 (s)ds

The pair 0' IJ is then approximated at the k-th stage by the roots Uko Pk of

2 + ak 1 + 0 k 
= 

0

It seems likely that while (2.24) is nicer from the viewpoint of mathematical simplicity,

it is better to solve (2.19), (2.20) rather than (2.24) because the formula for the kernel

W(y,t,oM(a0 )) in (2.24) is rather complicated.

If a simulation routine combining the period estimator, compensator and a

methematical model of the plant to be controlled is already in hand, as was the case for

the writer, approximate solutions of the variational equation can be obtained by running

the simulator with slightly different initial conditions and forming the appropriate

difference quotient of the resulting solutions. This aes not test the validity of our

derivation of the variational equation but, as we will see in Section 5, it does provide

results consistent with the proposed functional equation model for error propagation.

-24-



4. NUMERICAL MEALIZATIQOl OF THE PERIOD ESTIMATOR

If x(t) is a solution of

x(t) - (A + CK) x(t) + v(t), t ) 0

and the disturbance v(t) is periodic with period T:

v(t) - v(t + T)

then an observation on x(t),

W(t) - H x(t)

will tend exponentially to a period observation, i.e.,

lim (W(t) - W(t + T)) - 0
t e

In this section we develop a numerical procedure for estimation of T which is a

realization of the continuous procedure described in Section 2. We will take W to be

scalar here but the extension to vector observations is quite immediate.

We will suppose that w(t) is not available continuously. Rather, we have discrete

samples

Wk w(tk)' tk+1 - tk - h > 0, k - 0,1,2.

For computational purposes we define the interpolated observation on t ( t tk+ 1 by

"w(tk + oh) - 1 OWk+1 + (1 - oN1k, 0 - a 4 1 (4.1)

We note that (t (t k+" We define nk - Wk' k - 0,1,2 ..... Our method

for estimating T is to form, at each instant tk, and for a range L0  £ 4 L1 , the

functions

PkX(O) - nk - nk-1(o) (4.2)

and determine values Ik' Ok of I, ( which minimize

k -
Ck,(a) I ) v Pk-Jx(a)

j-0

which should be compared with (2.6). The functions (4.2), of course, require only the

values nk w "k' 1k+ k+l for this description and the pk,j admit a comparable

-25-
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• J.

finite characterization. Once Ik,Ok have been determined, the estimate for T at the

instant tk is

Tk = (Lk - ak)h " (4.3)

If y is close to 1 this estimate may be expected to change only slowly, as k varies,

in response to varying periodic behavior of w(t) while values of y closer to zero

provide more rapid updating capability. The use of the parameter a, allowing for

interpolation between recorded discrete data, permits one to obtain accurate results

without an excessively fast sampling rate.

Let us now examine the computational considerations applying to the method. For

0 < a < 1 we have

Pk,L(a) =n k - to nk-1+1 + (1 -o)nk-L]

and thus

2 2 + a22 2_ + 2n2
= k k k-X+1 k-1

-
2
On knkt+1 - 2(1 - O)nknk _ + 2(1 - o)hk_1+1 nk_.

Defining

S = . ¥ + 2
j=0 O

Ski = 7 A2__

p k,k-I Y n ~k-jr'k-X-j
j=0

Pk,k-t+l = Y]2k-jj=0

Pk-L+1,k-£ " 7L Ykt+l-j k_1_ j ,

-26-
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7 1

we See that

C,1(C) " a
2 S . - Sk -

2
P k-+.,k-A]

* 2o Lk-t - Pk,k-At1 + k,k-t + k-t+,k-A'

+ [ 
k+ k2'  - 2Pk A -11

The numbers Ski Sk_' Sk-A+1 are included in Sk, ... Sk , and theme are stored in a

2
"push-down" mode and updated via

8k1 2

k+ 1  k+1 + TSk I S(k+l)_l 
S
k'

S (k+l)-L
2  Sk-(L

2 -1)

Similarly Pk,kAl' P kk-+l are stored among Pk,k-l' . Pk,k-L2 and are updated via

Pk+1,k+1-A k+1 k+1-t 
+ 
YP k,k-A' etc. (4.4)

Finally, it is necessary to store

P' Pk,k-1 P k-l,k-2, " "' P k-L 2+I,kL 2"

The numbers Pk,k-1 are also updated via (4.4) and

(k+l)-t,(k+1)-(+1) ' Pk-(t-1),k-A

defines the "push-down" operation.

With the above numbers available we clearly have

a [k_+ -8S~ - 2Pk. )
3a k-+ -A kA1k-t1

+ [Sk-1 " Pk,k-A+1 + Pk,k-L + Pk-t+1,k-A] (4.5)

In particular,

2" a o- 0 " 
s
k-

t 
- Pk,k-t+l 

+ 
Pk,k-A 

+ 
Pk-t+l,k-t

2 0 a 1 kk-A+1 - k,k-A+ + Pk,k-A - Pk-A+1,k- "

-27-
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Each pair A, a corresponds to a delay T(,0) - (A - 0)k. Thus CkA(a) can be

associated with a function Ck(t) defined for tk - h < t I tk - L1 h, the values of

A corresponding, when a - 0, to the points t - tk - Ah. As a increases from 0

to 1 we pass from t - t k - Ah to t - tk - (A - 1)h. Thus we have

B 0 a :t _ (tk-th)+

"" ac kX ' ~CkI-1 at : - (tk - (-1)h)-

candidate for the minimizing value Tk  just in case

I .C5L& ' 0 .1 8S,1e1 42 Ba 2 Ba o-
Ta-a0 a -i1

i.e.,

Sk-A " Pk,k-A+l + 
Pk,k-A Pk-A+1,k-A " 0

S k- " Pk,k-A + 
Pk,k-A+l Pk-A,k-A-1 ' 0

On the other hand, the interval [(I - 1)h, Ah] is a candidate for containing the

minimizing value of Tk  just in case

1 'CA > 0 -1ak < 0
2 Ba 1 ' 2 au 10 0

i.e.,

S k-1+ - Pk,k-t+l + Pk,k-I - Pk-1+1,k-t 
> 

0 , (4.6)

Sk-A " P k,k-A+1 
+ 
Pk,k-A 

+ 
Pk- +1,k-A 

< 
0 (4.7)

If (4.6), (4.7) are true for a given A, we compute the corresponding a by setting

(4.5) equal to zero, i.e.,

tSk-A - Pk,k-A+1 + Pk,k-A + Pk-A+1,k-Aj

[Lk-1+1 -1 -2P k-A+1,k-A]

-28-
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Once the finitely many possible candidates for Tk have been selected by this process,

Tk  Is chosen from these as the one yielding the smallest value of Ck,e(o)

It is possible to economize on memory space by using slightly modified quantities.

With

Pk,L = nk - nk-L

[ Sk,4 I Y (20kP 1)

i-0

k =,X-l - 0 k-j,~k-j,L-1
J0

S - a Y (Pk-j,,L_12,

updated via

Pk+1,t ( Ik+1 - n k} + 
0k,-1' 1 = 1,2 ... , L2

S k+1, + (P ) + y k , , 1,2, . .. , 2

Pk+1,L-1 k+1,A~k+1,t-1 
+ 

'' Pk,L,i," - 2, ... , -2

it may be seen that we have

c k1 a 2[ k, 2 ;k11 + ;k,#l - 2,kl - ;k'01-1 k,1-11

so
Ckt=...

2 o O[S ,j -
2
Pk,,-1 + Sk,- 1

1 - [k,1 " ;k,1,1-11

and this vanishes when

a - I, - k,..1J/Sk,Jt- 2 Pk,1, -1 + Sk,1A-i

The other aspects of the analysis remain as above. This procedure is the one actually used

in Fortran SUBROUTINE PERIOD (L2, L1, GAMMA, H, PER, Y), whose listing follows and which

forms the basis for the numerical experiments carried out in Section 5. Here PER is the

-29-
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returned period estimate while Y is the supplied observation at each instant tk. The

other arguments are parameters whose identification is clear.

SUBROUTINE PERIOD(L2,L1.CAMMAH,PER,Y)
DIMENSION S(40),P(40)oRHO(40)
INTEGER L-L1,L2,L1PILM1
L2MI = L2 - 1
ETAOLD = ETANEW
ETANEW = Y
DO 15 L = 1,L2MI
KL = L2 - L + I

KLM1 = KL - 1
15 RHO(KL) = ETANEW - ETAOLD f RHO(KLMI)

RHO(1) = ETANEW - ETAOLD

DO 16 L = 1,L2
16 S(L) = GAMMA*S(L) + (RHO(L))**2

DO 17 L = 1,L2M1
LP1 = L+1

17 P(L) = GAMMA*P(L) + RHO(L)*RHO(LPI)
PER = FLOAT(L1)*H
SMINI = S(L1)

LIPI = L1+1
DO 26 L = L1P1,L2
LM1 = L-1

) IF(S(LM1),LT.SMINI)GO TO 21
)GO TO 22

* ) 21 PER = FLOAT(LM1)*H
i ) SMINI = S(LM1)

22 IF(P(LM1).GT.S(LM1))QO TO 24
IF(P(LMI).GT.S(L))GO TO 24
QUO = S(L)+S(LM1)-2.*P(LM1)
IF(GUO.LT..OOOOO1)GO TO 26
SIG = (S(L)-P(LM1))/QUO
VALSIG = SIG*SIC*S(LM1)+(1.-SIG)*(1.-SIG)*S(L)+2.*SIG*
I(1.-SIG)*P(LM1)
IF(VALSIC.LT.SMINI)GO TO 23
GO TO 24

23 PER = (FLOAT(L)-SIG)*H
SMINI = VALSIG

24 IF(S(L).LT.SMINI)GO 10 25
GO TO 26

25 PER = FLOAT(L)*H
SMINI = S(L)

26 CONTINUE
* RETURN

END

If there is some danger of confusing the minimal period T with one of its

multiples 2T, 3T, etc., this can usually be overcome by specifying Li, L2 correctly.

-30-
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5. SOME NUMERICAL EXPERIENCE WITH PERIOD

We have carried out extensive computer based simulations using SUBROUTINE PERIOD

described in the preceding section. Here we will describe results obtained in connection

with the plant

• 1 1 1(l/ 0
I) 0 -.2 2 + (18)(u + v) (5.1)

x x

with

v(t) - z (t) (5.2)
• 1 1

) - ) (Z) (5.3)
( z

The rather nondescript parameters appearing in (5.1) result from the fact that this damped

inertial system is a mdel for a certain physical plant of interest. A compensator was

constructed in the form (0.7) using S - -EP0  with P0  as in (1.10). To provide a more

or less standard basis of comparison the feedback coefficients in all cases were chosen to

achieve critical damping (i.e., multiple real eigenvalues) at various rates in the closed

loop matrix

A + CK -(80 ' )(5.4)
A + (2 8kI -. 2+28k 2

In this very simple example

a C 0 )B = " C" 28 '

* and -L (cf. (0.1)) were both chosen to be 2 x 2 identity matrices. For the values

of k1  and k2 which were used P0  turns out to be a very small matrix and we used

e 1000.

The output used for the period estimation was w(t) - xI(t) + yl(t) and the output

shown on the diagrams is x1 (t). It will be seen that the initial estimates for the

period, T(t), are wildly inaccurate but, in the cases when the complete

plant/compensator/identifier system is asymptotically stable, the estimate T(t)

-31-
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converges to the correct value To  (within the accuracy permitted by the approximations

inherent in PERIOD, as described in the preceding section). In all cases we selected

zl(O) - 1, z21o1 = 0, so

z (t) - cos (at), z 2(t) - -0 sin (at)

In Figures 1-16 the odd numbered Figures show the output x t) while the next,

even-numbered figure in each case shows the period estimate T(t) for the same run.

Figures 1 through 4 correspond to choices of k, and k2  such that the matrix (5.4)

has a double eigenvalue X - -5. In Figs. 1, 2 a0 = 20w (10 Hertz) corresponding to

To = .1, indicated by the dotted line. Figures 3, 4 illustrate the corresponding

experience for a0 - 30w (15 Hertz), or To - .0667. Here the period identifier diverges

from the correct value and, as seen in Fig. 3, no significant reduction of the oscillation

of x1(t) is realized. We believe that this is accounted for by the fact that the term

2w/(T0)2 in (2.21) changes from 200w in the 10 Hz case to 450w in the 15 Hz

case.

Figures 5-8 show the 10 Hz case with k, and k chosen so that (5.4) has a

double eigenvalue A - -8 (Figs. 5 and 6) and with k, and k2 chosen so that A - -9.

These cases seem quite satisfactory with rapid attenuation of the oscillation in x1 (t),

better in the second case than in the first, and rapid convergence of the period estimate

T(t) to To = .1. The corresponding experience in the 15 Hz case is not nearly so

satisfactory. Figs. 9 and 10 show the performance for A = -8.5 while Figs. 11 and 12

show A = -10. We see from Figs. 10 and 12 that, although the value To is unstable, the

estimate T(t) tends to undergo a self-excited oscillation about the equilibrium value

indicated by the dotted lines. The evidence favors the conjecture that in these cases the

nonlinear equation (2.11) may exhibit a Hopf type bifurcation as the parameter To passes

from .1 (10 Hz.) to .0667 (15 Hz.). Detailed analysis of this possibility must await

later treatment.

Figures 13 through 16 show experience in the 15 Hz case with ki and k2 selected

so that A = -14 (Figs. 13 and 14) and so that A = -20 (Figs. 15 and 16). We see that
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the performance improves as (5.4) is made progressively more stable, in agreement with the

conjectures of Section 3. The small residual oscillation evident in Fig. 15 is probably

due to the fact that PERIOD does not provide an exact estimate even when the corresponding

continuous process associated with minimization of (2.4) or (2.6) is asymptotically

stable.

Figures 17 and 18 show variational AT solutions, obtained in the manner described

at the end of Section 3, for the 15 Hz case with A = -9 and A = -14, respectively.

Because T(t) does not converge to To  in the first case (cf. Fig. 12), even the

variational solutions are not sinusoidal.

In Fig. 18, corresponding to X - -14, T(t) converges to To - .0667 (cf. Fig. 14)

and the corresponding variational solution tends to zero in a convincing exponentially

damped sinusoidal manner, this behavior becoming more convincing as t increases. It is

of interest to estimate the frequencies and damping factors here and compare them with the

eigenvalues of M(a 0), F(0). Analyzing the data plotted in Fig. 18 one obtains the

estimate T - .66 and, comparing the successive amplitudes, we see that the oscillation

there is approximated by

C+ e ( - .52 5 +i9. 5 2 )t + c e(-.525 - i952)t (5.5)

e ( 0 10 0

MO - 19012 -27.188 -28 0
0 -2.9;r6 82.417 0 1

-.009 -2.966 -8873.8 0

and its eigenvalues may be computed to be

-2.77 1 i105.32, -10.82 * 15.9

None of these correspond to (5.5) and we conclude that the dynamics exhibited in the

identification process arise from a different source - which, on the basis of our earlier

investigations in this paper, we believe to be the functional equation (2.22)

(equivalently (2.19), (2.20)).

In Figures 19-26 we indicate the effect of varying the parameters y and c

(cf. (1.9), (2.4)) while leaving the feedback parameters in K fixed at the values which
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produced Figures 13 and 14 with y = .9 and C - 1000. This corresponds to the double

eigenvalue X = -14 for (5.4).) Here it needs to be explained that the value "GAMMA"

-yh
referred to on the figure heading corresponds to e , where h is the length of the

sampling interval used by PERIOD. For all cases studied here h is ten times the H

value shown in the figure heading; thus h - .01 and

GAMMA = .8 = e .OY

loge .8
+ y - = -22.3

-.01

GAMMA = .9 y = -10.5

GAMMA = .95 + y = -5.13

As we see by comparison of Figs. 19 and 20 with 13 and 14, performance is substantially

degraded by discounting past values too much, corresponding to y = -5.13 on the other

hand, gives substantially better performance than y - -10.5.

For Figs. 23 and 24 we have set GAMMA =.9 again but have increased C to 2000

rather than the earlier 1000. The improvement over the results in Figs. 13 and 24 is

again quite marked. To obtain the results of Figs. 25 and 26 we "pulled out all the

stops" and set GAMMA - .95, C = 2000 and chose feedback parameters corresponding to a

double eigenvalue X = -20 for (5.4). Here we finally obtain the sort of sinusoidal

disturbance rejection one would hope for.

It is clear from these numerical studies that the procedure we have described here

can be effective for vibration suppression under certain circumstances. We have also made

a case in this article for the proposition that the near equilibrium plant/compensator/

identifier dynamics are governed by a functional equation involving an infinite delay and

periodic coefficients. It remains for other investigations to develop the detailed

relationships between the design parameters and the dynamics of solutions of this

functional equation upon which a design methodology for effective performance might be

based.
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4- 0010 GAMIA = 9000 FBI -09 Ffl2 --03 "REQ 10.00 EPS - 1000.
0.0 10, ...-- - -- --

0.008

0.006

0.004

0.002 '~
Fig. 1 0.000 JIA

0.002

-0.004-1

-0.006,

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
TIME

< P LO T 7 9 > Release 1.6a 01-AUG-84 11:18:36

H = .0010 GAMMA = 9000 FBI = -0.9 FB2 - -0.3 FREQ - 10.00 EPS - 1000.
0.105. ....

.. 0.1I00

0.095

0.090

0.085

Fig. 2 0.080

0.075

0.070

0.065

0.060 L. -_______, ____ ____

0.0 05 1.0 1.5 2.0 2.5 3.0 3.5 40 4.5 5.0
TIME

-35- 1 L0T 7 9 Rel.;,.el.a 01-AUG-84 112007

-- -- -"- , -, --. .- -- . - - , , " ' ' - . -i . - ' -- '- - " "



7-7 -. 7. w--777=- :.-.

II 00 10 GAMMA 9000 131 -0 9 FB2 -03 FUICQ -15 00 EVS 1000

0.0 - T - ---

0.004

0.002

0.000

Fig. 3 V!

0.002

0.004

* ~0.006 I

0.0 0.5 1.0 1.5 2.0 2'5 340 3'5 4.0 4.5 5.0
TIME

< PL 0T 7 9 Release I B 0 1- AUC- 84 0 2842

HI .0010 GAMMA .9000 FBI -0 9 F82 -0 3 FREQ 15 00 EPS =1000,

0.070 I I

* 0.065

Fig. 4 0.060

0.055

0 050

10.045 -------

0,0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 50
TIME

* ~~~-36- < _______ _- P O T 7 9 ?Reklise 1
6

a 01-AAUG:Ii: 11 30 20 _ --

* - - __ w



i

H .0010) CAW,'N1A - )0000 FBI - -22 FB2 = -06 FIPQ 1000 FPS 1)000

0.000 , , - - -- -

0.006

0.004

0.0020.00

Fig. 5 0.002

0.004

-0.006

0 -0.008 , I I , I
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

TIME

< P LO T 7 9 > Release I.6a 01-AUG-84 11:07:21

H = .0010 GAMMA = 9000 FBI : -2.2 FB2 = -06 FREQ = 10.00 EPS = 1000.0.11I0. ....

0.105

0.100

0.095

0.090
Fig. 6

0.085
SI

0.080

0.075

0.070

0.065

0.060 1____ _ _ __ J L .. L L
0.0 0.5 10 1.5 2.0 2.5 30 3.5 1 0 4 5 50

TIME
-37- PL0 T 7 9 > Rlcn' i 6a 01 -AUG 84 II O '32

0. - -• ,
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4

II n in10 C;AMMA - 9000 FUI -- 35 FV1I2 -0'7 FR'(N 1000 El's - 1000
"~ ~ ~ ~~~0 0008 , -...- r ,

0.006

0.004

0.002

Fig. 7
0.000

k-0-002
0.004

-0.006

-0.008
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

TIME
< P L 0 T 7 9 > Release I.6a 01-AUG-84 11.38:22

H - .0010 GAMMA = .9000 FBI -3.5 FB2 = -07 FREQ = 1000 EPS = 1000.

0.110

0.105

0.100

0.095
Fig. 8

0.090

0.085
4 .7 0.080

0.075

0.070

0.065

0.060 - __- -- -- ,-._,___,__
0.0 0.5 1 0 1.5 2.0 2.5 30 3.5 4.0 4.5 5.0

TIME
-38- P L 0 T 7 9 > RrIn I S, 01-AIIG-a4 11 400_

L - - . - - _ - - - - .
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1) 1) G MMA - 90)00 FIl 1 2 5 VD2 0( 6 i~ P1,1 00 1, 1 1000

o0004

10003

I 

IN

tO 003

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3. 5 4 0 4.5 5.0
TIME

< P 1. 0 T 7 9 Release 1.6a 0KI- AUG -~ l43 0 ____i_______

H = .0010 GAMMA =9000 FII -25 F[W -0.6 FREQ 15.30 E1'S =1000.

0.065

0.060

F i g . 1 00 
. 5

~0.050

0.045

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 .4.0 4.5 5.0
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I MO (,kiI )0"' fl 1 1<V2 I' (or 10 I 3i00

0.004

10,003

re0.002 
II

0.0001 'I i

Fig. 11 0.0 I'I

-0.003 ~

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4l.5 5.0

_________________ < 10 T 7-t 9 -ees ~ 1AUr - 14 32.

H=.0010 GAMMA 0000 f-131 --3 6 Ii)? 0 -07 F*PQ is1 00 Eps - 1000.
0.070 __

0.065 -

Fig. 12
0.060

6.5

.0.055

0.015
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H 0010 CMMA = 9000 FBI 60 FB2 - -10 FREQ . 1500 EPS = 1000
0.004

0.003

0.002

Fig. 13 0.0

i 0.000

0 001

0.002

0.003

-0.004 I I
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

TIME
< P L 0 T 7 9 > Release 1.6a 01-AUG-84 15:26:07

H - .0010 GAMMA = 9000 FBI = -6.8 P82 = -1.O FREQ = 15.00 EPS = 1000.
0.070

0.065

Fig. 14 0.060

0.055

0.050

0.045 , , . .
0.0 0.5 10 15 20. 2.5 3.0 3.5 4.0 4.5 50

TIME
-4__-_ _ _ P L-0 T 7 9 > Release 11a 01-AUG-84 15:2701



H .0010 GAMMA 9000 FBI -1.19 F82 -1.4 FREQ 1500 EPS 10O.

5 0.003

0,003

0,002

0.001

Fig. 15 0.000

0.001

0.002

0.003
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5,0

TIME
< P L OT 79 > Release 1.6a 31-JUL-84 15:55:55

H = .O010 GAMMA 9000 FBI = -13.9 FBZ -1.4 FREQ = 15.00 EPS = 1000.
0.070

0.065

0.060

Fig. 16

0.055

0.050

0.0451 ' J..
0,0 05 1.0 1.5 2.0 2.5 3.0 3.5 40 4.5 5.0

TIME

-42- PRle.se Ila 31-.UL-4 15,482,
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H - 0010 G. MMA 9000 FBI = -:3) FB2 = -07 FREQ = 15.00 EPS 1000.
0.008 - , -- ,

0.006

0.004

0.002

0.000

0.002
Fig. 17

0.004

-0.006 -

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

TIME
< P L 0 T 7 9 > Release 1.6a 01-AUG-84 14:20:12

H = .0010 GAMMA = .9000 FBI -6.8 FB2 - -1.0 FREQ = 15.00 EPS 1000.

0.12 .

0.10

0.08

0.06

0.04

Fig. 18

0.02

0.00

-0.02

-0.04 , , I
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

TIME
* -43- < P L 0 T 7 9 > Release I 6a 01-AUG-4 15:352_1
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. - 0.014 H = .0010 GAMMA = 8000 FBI -6.8 FB2 = -1 0 FEQ = 15.00 EPS = 1000.
." ~~0.014. ....

" - 0.012

0.010

0.008

0.006

0.004
Fig. 19

0.002

0.000

0.002 1 --A

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
TIME

< P L 0 T 7 9 > Release 1.6 03-AUG-84 15:12:29

H , .0010 GAMMA = .8000 F91 -6.8 FB2 = -1.0 FREQ = 15.00 EPS = 1000.- ' ~0.070.....

0.065

0.060

0.055
Fig. 20

0 0.050

0.045
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

TIME
0 -44- __P LOT 7 9 Rolensc 1.6a 03-AUG-84 15.1059
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H = 0010 GAMMA = 9500 FBI = -6.8 FB2 -1 0 FREQ = 1500 EPS = 1000.
0.014 -. . . . . ..- ,

0.0 12

0.010

0.008

0.006

0.004
Fig. 21

0.002

0.00

00.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
TIME

< P L 0 T 7 9 > Release 1.6a 03-AUG-84 15:03:59

H =.0010 GAMMA =.9500 FBI -6.8 FB2 -- 1.0 FREQ -15.00 EPS =1000.

0.070 I

0.065

0.060

0.055
Fig. 22

0.050

0.045 
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

TIME
-45- < P L 0 T 7 9 > Release I 6 03-AUG-84 150456

* ' . 00 0 .. . ...

* . .



H -0010 GAMMA =.9000 FBI -- 6.8 FB2 =-1.0 FREQ -15.00 EPS =2000.

0.014 ----- II

0.0 12

0.0.10

0.008

0.006

Fig. 23 0.004

0.002

0.000

e ~~~0.002 I I I

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
TIME

<P L 0 7 7 9 > Release t.8a 03-AUG-84 15:01:30

H -. 00 10 GAMMA =.9000 FBI =-6.8 FB2 -- 1.0 FREQ -15.00 EPS -2000.

0.070

0.065

0.060

Fig. 24
0.055

0.050

0.045 I

0.0 0.5 1.0 1.5 2. 0 2.5 3.0 3.5 4.0 4.5 5.0
TIME

q-46- < P L 0 T 7 > Relese 1.6a 03 -AUG -84 15.02 26



H - .001O GAMMA - 9500 |7I = -14.3 F82 = -14 FRF.Q = 1500 EPS - 2000.
0.014 -- -.. ..

0.012

0.010

0.008

0.006

~0.004

Fig. 25 0

0.002

0.000 -
6

-0.002 , I , , ,
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

TIME
< P L 0 ? 9 > Release I.Ga 06-AUG-84 10:48.22

14 - .0010 GAMMA = .9500 FBI -14.3 FB2 = -1.4 FREQ - 15.00 EPS = 2000.

0.070

0.065

0.060

6

0.055
Fig. 26

* 0.050

0.045 I , I
0.0 0.5 1.0 1.5 2,0 2.5 3.0 3.5 4.0 4.5 5.0

-47- < P1.0T79 LROTcas T IE 06-AUG-84 10.50 55
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6. SKETCH OF THE PROOF OF THEOREM 5.

Let z(t), W(t,s), etc., be as in the statement of Theorem 5. For any t > 0 we

have
t

Z(t) = J W(t,s)z(s)ds =

t kT 0

I W(t,s)z(s)ds + J W(t,s)z(s)ds + J W(t,s)z(s)ds , (6.1)

kT 0

2where k is the largest integer such that kT C t. We define z e L [0,T] by

" ()- z((-1)T + T), T-C [0,T], £ ; 1 ,

and we define zL e L 2[0,t] by
m

z1(t) -(-(1t1)T + T), T e [0,T], £ ; 0

Then, with

t - kT + T, s - XT + 0, s e [LT,(£+I)T],

(6.1) yields

T k T

Zk+1 (T) - J W(kT + T,kT + O)z k+l(a)do - I J W(kT + T,(j - 1)T + O)z (a) W
0 j-1 0

a T

= X J W(kT + T, -(I + 1)T + a)z_(0)d0 . (6.2)
L=0 0

Using the periodicity relation (3.7) we have

W(kT + t, (j - 1)T + 0) = W(T, - (k - j)T + a) W k-j(Te)

for any integer j C k. Then (6.2) becomes

ST k T
Sk+I (T) - 0 w(T,O)Z k+llalda - ). J Wk(1

d
a

0 j-1 0

T

= Wk+l+£t,)z£()dO (6.3)
X=0 0
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The conditions (3.7), (3.8) show that the last sum converges in L 2[0,T]. we may writem

(6.3) as a vector linear recursion equation in L 2[0,T]:

k

0 -)z k - P kljzj P p~+J Xz64
o- k+1k1-

where j ++ 64

(P 0 z)(r) - f WO (r,o)z(a)da,
0

T

(P kz)(T) - f Wk (r,O)z(a)da, k - 1,2,3 ..
0

As is well known ([3]) 1 - P0  is boundedly invertible, POI P1, P2 , . are all

compact. Then

Q- -(I - -1 , k - 1,2,3, *.(6.5)

are all compact and, keeping (3.7) in mind, it may be seen that for some positive

numiber D

IQ~ 1 -kcT, k - 1,2,3, (6.6)

Then (6.4) can be written,with an obvious re-indexing, as

-1 -k
Z k + 1-k+ QX z +k + ) Q z ,k k - 1,2,3, (6.7)

Given a sequence I~kI- - k < C H, where H is a Hilbert space, and supposing

that

N 1 (y+)k, k - 1,2,3,(.)

Y 1 4 k-f- k - 0--23,.,(6.9)

where H 14 ,-Y ,Y- are all positive numbers and Y+ > Y-, we define the bilateral

"Z-transform" (discrete Laplace transform) of t ~1  by

-k = 4 +4.Y

k-i

- ) -k~ =n MA, Al y- (6.10)
k0O
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Clearly, M(X) is analytic in neighborhoods of both 0 and . In many cases

S +(X) and n-(X) are analytic continuations of each other. For example, if for all

integers k
k

Yk =  y Y' y0e H, P * 0 e

i + M
+

then with Y = Y-= Ul, M - = 1, all of the above are valid for

+ 1n+(M = M~X), 1Il > Il, , (X) = ,(x), lXI < 10!, n(M) - P - --

If, correspondingly, {QkI-- < k < "}, is a sequence of bounded operators on H

such thatI + -k
hh IQk k B+(P+)

- 
, k = 1,2,3 ... (6.11)

|Q-k
I  B (P)k k = 0,-1,-2, ... , (6.12)

where B , B-, p 
+
, P- are all positive (and p

+ 
> y , p - < y- in our application), we

may define the discrete Fourier transform of 1QkI by

kQ( ) k A (6.13)
k=-0

Clearly the series converges and Q(A) is a holomorphic operator valued function for

p- < AJX < P+ If Qk - 0 for all positive k, then P+ may be taken to be and

Q(M) will be holomorphic for IAl > P-, including A .

The convolution of {Qk1  Q and {yk} y is defined by

f, =(Q y)t = k kyk+.E' (6.14)

the sum being convergent when (6.8), (6.9), (6.11) and (6.12) apply and

p+ > Y, P - < Y, as we suppose. To anyone familiar with transforms of this type the

first question occurring concerns the relationship of the transform 0(A) of {fj to

the transforms Q(A), n(A). The answer is easy but not completely obvious. Let

r and r be positively oriented circles centered at A = 0 with radii r r

Y + r +  p, p- < r < y. Then, as we show in the more complete discussion [7], if
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* 1 .-. -, , - . . - . ..*---- dr-. r . -, , . 1 r rr -rrrrrrrr. 7w r . ... ' . 1 I

r - r- and A lies in the exterior of the annular regions between r and F

s,.) =~_ i..f Q(C)n( )dC (6.15)

2i -

This condition is necessary and sufficient for (6.14) to be true.

When Qk - 0 for k positive and QO has a bounded inverse, (6.14) becomes

0

k Qkyk+L = f 6.16)

and, given the initial values

= 9_Y,# £ - 0,1,2,3, ... (6.17)

and fl, f2, f3 ... , we can compute Y11 Y21 Y3 .... The case of interest to us is the

homogeneous case fl = f2 = f3 = ... = 0. Here it may be seen that with

X) = ;t, n(A) = yA-k , (6.18)
1=0 -k=l

and for JlI > r-, A not a singularity of Q(M)

n(") 1 1 Q ( ) (( )ds

Since Q(X) is analytic at A = and Q() = Q0 ' which is nonsingular, if we take

r+ , the radius of F, so large that all singularities of Q(A) are included in the

interior of F, then the individual Yk' k = 1,2,3, ... may be recovered via

1 i n(A)Ak-ld, k = 1,2,3, (6.20)Yk= 2--i r

With the use of formula (6.16) the proof of Theorem 5 may be completed. In our

application H = L 2[0,T] Qk = 0 for k positive, QO = I, Q, Q-2. Q-3' ... are allm

compact and the series (6.13) converges uniformly for JAI ) r- + 6 for any 6 > 0. It

is known ([], [5]) that the singularities of Q(A) must be isolated in any such region

and, for each such singularity Ak the null space of Q(A k ) must be finite

dimensional. Let F6 be the circle centered at 0 with radius r + 6. We may assume
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that F6  meets no singularities of Q(A). Then, applying (6.16) to the zk of (6.7) we

have

z I n(X)Xk-ldX + 2o-- - (A)k-ldA (6.21)
k 2111 r 2ir6  r6

Zk,F Zk,r-+6 , k -1,2,3,

where r6 = r
+ 

- F . From (6.19) and (6.21) it is clear that

6k
z k,r- + S1 4 M(r +

where M is a constant which may be bounded in terms of f, hence in terms of the

z,1 = 0,1,2, ..... On the other hand

S Ak Res (X)
k,F = A 2e Int' 6 j

In the case of a simple eigenvalue A with one dimensional null space, which is all we

will study here, from the formula (6.19) for n it may be seen that

Res n( j,Q( ()ds (6.22)
Q*(jj r 2

where 0. is a non-zero vector in the one dimensional null space of Q(A.) and 4j is a

corresponding vector in the null space of Q(Xj)* such that (T 0. We see

in any case that zk,F  is a sum of the form m

z k  k = 1,2,3, (6.23)Zk,F X A.e Int j6  j

The corresponding solutions ZF(t), z8 (t) of (3.6) (or (6.1)) are obtained by inverting

the transformations which follow (6.1). The term e of (3.11) is identified with

r- + 6. It is greater than e-cT  which is identified with r-. Thus z (t) satisfies

(3.11)
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Since %F(t) is a solution of (6.2), the form of that equation shows that zF(t)

must be a continuous function. The form (6.23) then implies that zF on any interval

[kT,(k + 1)T] is A. times the corresponding value of ZF on [(k - 1)TkT]. From this

is clear that

W(t) - A. 0(0)

We identify eAT  in (3.12) with A and P(T) with the T - periodic extension of

e *. (t) (which satisfies

P(T)- e' AT j(T) = A 0JI(T) - *j(0) - eA Oj(0) - P(0))

Thus, modulo the usual remarks which most apply to non-simple poles of Q(A)-1 , which

lead to solutions of the form (3.13), we have completed the proof of Theorem 5. Further

details may be found in [7]. The main point of the theorem is that the dominant solutions

of (3.6) (or (6.1)) are those associated with the larger singularities of Q(A) and those

solutions are of the type (3.12) or (3.13).
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